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Abstract 

An approach to the calculation of the total energy of atoms and atomic ions as a 
function of atomic number Z and number of electrons N, based on the solution of second- 
order differential equations together with auxiliary conditions, is presented. Some 
applications of the equations to the description of real atoms are also shown. Physical 
consequences of the approach are indicated. Attention is paid to the methodological 
aspects of the approach, which give the analytical form of the results and are very 
convenient for further treatment. 

1. In t roduct ion  

The Hohenberg-Kohn theorem [1] states the one-to-one correspondence between 
the positive electrostatic field and the ground-state electronic density 19. The total 
energy of the system is given by the functional E[p], which generally depends on 
the function V(r) defining the field. If the functional E[p] is defined, both the density 
function and the energy can be determined with the help of the variational principle. 

The Density Functional Theory (DFT) postulates the variational equation 
with isoperimetric constraints fixing the number of electrons N in the system. The 
Lagrange multiplier defines the chemical potential/.t of the electron gas. This means 
that the field and the number of particles determine the chemical potential and the 
total ground energy of the system. 

In the case of atoms or atomic ions, where the field is explicitly defined by 
the nuclear charge Z, the total energy is fixed solely by Z and N. One can expect 
the existence of the function E(Z, N) resulting from the general functional E[p]. 
Such a function exists within Nonrelativistic Thomas-Fermi  (NTF) theory. The NTF 
theory is a very useful tool in studies of atomic and molecular properties, mainly 
as a convenient charge density and energy model [2]. The atomic (ionic) binding 
energy function E(Z, N) has been 8etermined numerically [3,4], and can in principle 
be defined analytically in the case of large N as the Z -1 expansion [5-8]. Approximate 
analytical results have also been established for the weak and strong ionization 
limits [4]. 

© J.C. Baltzer AG, Scientific Publishing Company 



162 W.S. Ptak et al., Differential equations for energy of atoms 

The regularities in the experimental atomic/ionic binding energies are still 
not clear within the demity functional theory [9], and it is expected that the modifications 
of the T - F  scheme should be helpful in elucidation of the problem. 

In the previous note [10], we have paid attention to the equation [9,11]: 

where p = 4/3, #(Z, N) is the chemical potential of the atom or positive ion with 
nuclear charge eZ and the number of electrons N, which is equivalent to the more 
general second-order differential equations of the hyperbolic type: 

~2E c72E DE 
N - ~  +Z~NoZ-- P ~  = 0 .  (2) 

The general solution of this equation in the generalized coordinates resulting 
from the characteristic equation of (2) is of the form: 

E(r/, ~) = F(r/) G(~), (3) 

where { = Z, r /= In(Z/N). Independent of the chosen boundary conditions, 

G(~) = a 1 ~P+ 1, (4) 

where a 1 is a constant. 
The function F(r/) depends on the boundary conditions imposed on the general 

solution. Assuming that the energy of the atomic system changes by the same value 
due to the small change of charge of the electronic cloud as due to the change of 
the nuclear charge [12], 

0E ~E 
~Z - ~N ' (5) 

and using the energy scale defined by the boundary condition E(~, 0) = 0, the solution 
:for F(r/) is obtained: 

F = a2 (1 - e - ° )  p+1, (6) 

which together with (3) and (4) gives the relation 

E(Z, N) = a ( Z -  N) p + ~, (7) 

with a = A/O o in the weak ionization limit, where: 



W.S. Ptak et al., Differential equations for energy of atoms 163 

~o = lira Xo(r/)(1 - e-n) -1/3 = const, 
r/--, 0 

A ~ (2 /9 / r2 )  1/3 = , x o is the T -  F radius of  the ion. 

The same results have also been obtained in an independent way [13]. Here, 
we present further results concerning in particular the boundary conditions (5). 

2. Generalization of boundary conditions 

In the generalized coordinates, eq. (5) is 

a e  = a e  (8) (e n -  I )  , 

from which, after elimination of  G(~), results 

p + l  d___F + _ _  F = 0. (9) 
dr/ 1 - e rl 

It is supposed that the right-hand side of  (9) in the general case is different from 
zero and is a function of  N/Z. Therefore, the equation 

dF(q___~) + P(r/)[F(r/) + Q(r/)] = 0 (10) 
dr/ 

is proposed as the most obvious generalization of  (9). 
The solution of  (10) may be expressed as 

F(r/) = exp - P(/3)d F(r/o 

L no JL 

_ f P(a)Q(a)  exp P(~)d/3  

~o " r/° 

(11) 

It may be proved that eq. (10) contains the boundary conditions for the exact 
T h o m a s -  Fermi solution. 

Assuming as before 

P(r/ ) -  p +  1 (12) 
l _ e  n , 

we have from (10) 
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dF ( l - e  rT) ~ + ( p + l ) F = - ( p + l ) Q .  

Multiplying both sides by G/{ and introducing 

OG G 
a{ (P + ~) { ' 

the equation: 

1 aE OE e ~ ~E G 
-~ a~ + a ~ ~ Or/ - - ( p + l ) -( o 

is obtained. 

a s  

(13) 

(14) 

(15) 

On the other hand, the T - F  energy may be expressed in our coordinate system 

ETI :=  _A ~(0) ~p+ 1 [ 1 O(r/) ( 1 -  e-rl)2 1 
~(0) ~ 0-)x o - ' ~ )  J ' (16) 

where ~(0) = (O~/Ox)rl = o,x = 0; ~(x) is the T - F  potential in dimensionless coordinates. 
Eliminating x o from this equation through the identity [4], 

(1 - e-r1) 2 OXo a~ 
Xo Or/ x0 ~ = - ( p -  1)e-n(1 - e-n), (17) 

it is possible to derive the equation 

a&'F I ~(r/)l (18) 1 3ET F0r/ (1--erl)+ 3~ -- (p+I)A~b(0)~p 1 ~ j  

which is formally identical to (14), under the condition 

0(7/) 
Q = 1 ~(0) '  (19) 

which defines function Q(rl) in (10). 
The knowledge of this function, together with (10) and (14), is sufficient for 

the definition of the function E(N, Z) in the T - F  method. The boundary condition 
of (2) in the T - F  limit as expressed by (10) has a clear physical meaning. It defines 
the relation between the chemical potential #(r/) and the electrostatic potential at 
the nucleus g(r/): 
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1 z + Z = a (p  + 1){P(1 - Q) (20) 

as a function of  Q(r/) and {. 

3. The weak ionization limit 

Within the T - F  method (the function P(r/) defined by (12)), the functional 
(11) assumes a simpler shape: 

F = (1 - e-~) p+I 1 - ( p + l )  ( l_e_#)p+2Q(lJ)d/~  (21) 

In the weak ionization limit: Q = 0, i.e. ¢ ( r / )=  ~0) .  Substituting this ~value into 
(21), eq. (7) is obtained. The known numerical values [3,4] of  ~(r/) indicate that 
this approximation is excellent up to 77 = 0.5 and very good up to 7/= 1. In other 
words, the symmetry of energy changes with respect to the changes of Z and N, as 
expressed by (5), holds approximately even for the moderately ionized atoms. This 
is probably the reason that a relation similar to (7) holds very well for atomic ions 
with partially filled valence shells [14]. The relation between chemical potential and 
electrostatic potential is very simple in this limit and depends only on the ionization 
degree of the ion 

(1 - e-rT) p 
# = Z (22) 

1 - ( 1 - e - r 1 )  p " 

The chemical potential itself is a function of both the coordinates r/, { which has 
been discussed earlier [10]. 

4. Neutral  atom limit 

The chemical potential of  a neutral atom expected by T - F  theory is equal to 
zero, which is a serious shortcoming of the theory if it is used as the model for the 
real atomic structure. In the light of  the results of  this work, this is an effect of  
boundary conditions which determine the function E(Z, N) in the T - F  limit, particularly 
the behaviour of  the energy with respect to Z and N for neutral atoms. 

To illustrate the possibility of modification of the function E(N, Z ) ,  let us 
assume the condition in the form 

~E ~E 
~ c ~  + ~ = 0 ,  (23) 
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which is equivalent to the function Q(r/) defined by 

Q = (1 - re- r / )P(x  "- 1). 

Substituting this function into (21), one can obtain 

E(rl, ~) = a~ p+ I (1 _ K-e-r / )  p + I .  

(24) 

(25) 

In this case, the limit limo ._, o(OE/Orl) is different from zero and relates the chemical 
potential to the value of ~¢: 

I . t=-a~:(p  + 1)~P(1-  x.) p. (26) 

Simultaneously, 

lim E(r/, ~) = 0 ,  
r / ~  r/o 

where r/0 = min{r/}; therefore, for 0 < ~¢< 1, negative ions with charge 

are stable. 
As an illustration, the application of a modified eq. (25) for the valence shells 

of  chosen atoms is shown. The parameter 1¢ which ensures the correct value of the 
chemical potential of  a neutral atom is expected to improve the agreement between 
experimental values Ez, u and the theoretical relation. Equation (25), if  satisfied, 
should give the linear relation between lnE and ln(Z - teN) at constant Z. The minimal 
net error of  linear regression for optimal ~¢ value as measured by 1 - R 2 (R is the 
correlation coefficient) is typically fifty times lower than that for to= 1 (fig. 1). The 
optimal value of  ~¢ allows us to estimate the chemical potential of neutral atoms 
from (26). The obtained values are in agreement with other values obtained in 
independent ways (table 1). 

The data for atoms with three valence electrons (B, A1) are only tentative 
(statistics with zero degree of  freedom). The obtained energy parameters are different 
from the T - F  values. The a value is systematically higher than the T - F  value but, 
according to expectations, values for the third period are lower than for the second 
period, p oscillates around the T - F  value. 
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Fig. 1. The effect of adjustment of eq, (25) to the experimental energy of chlorine ions. 
The energy parameters a, p and the net error of fitting are expressed in relation to the 
analogous values for x'= 1. The best fit (optimal x') corresponds to the minimum of 1 - R  z. 

Table 1 

Optimal K" values, remaining energy parameters a and p, and chemical potential 
# calculated for valence shells of some second and third wriod elements. Comparative 
values are in brackets 

Element tc a p - #  [a.u.] 

B 1.04 0.41 0.73 (<0)  [0.12 u] 
C 0.93 0.20 1.30 0.15 [0.11", 0.19 b] 
N 0.89 0.16 1.50 0.22 [0.26 b] 
O 0.96 0.29 1.20 0.16 [0.13", 0.33 u] 
F 0.93 0.22 1.39 0.26 [0.25", 0.40 u] 
Ne 0.92 0.23 1.39 0.34 [0.38 b] 
AI 1.02 0.35 0.67 (<0)  [0.08 b] 
Si 0.94 0.061 1.72 0.11 [0.11 a, 0.13 b] 
P 0.93 0.072 1.60 0.17 [0.08 a, 0.18 b] 
S 0.97 0.17 1.22 0.15 [0.15 a, 0.24 b] 
C1 0.96 0.13 1.34 0.21 [0.23 a, 0.30 b] 
Ar 0.95 0.16 1.29 0.26 [0.26 a] 

"R.G. Parr and LJ .  Bartolotti, J. Am. Chem. Soc. 104(1982)3802. 
bL.J. Bartolotti, S.R. Gadre and R.G. Parr, J. Am. Chem. Soc. 102(1980)2946. 
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5. Concluding remarks 

Studies of the function E(Z, N) in the NTF approximation by means of differential 
eqs. (2) and (10) give some additional insight into the problem. This may be 
summarized as follows: 

(1) The solution of eq. (2) in the coordinates r/, ~ suggests the variable ln(Z/N) 
as the most suitable for investigation of the NTF approximation. 

(2) The mathematically simplest boundary conditions lead to an energy scale 
counted from the infimum of the function E(Z, N), which may be compared 
with the "chemical" manner of energy counting from the equilibrium point. 
In our case, this is the point for which the chemical potential is equal to zero. 

(3) Boundary conditions for weakly ionized atoms in the NTF approximation 
illustrate some interesting features of the atomic structure. The small change 
of nuclear charge gives nearly the same energetical effect as the small change 
of number of electrons. Because in the spirit of the Hohenberg-Kohn 
theorem [1] Z defines the positive electrostatic field, N the total negative 
charge, relation (5) or, more generally (10), is one of the aspects of f ie ld-  
space charge correspondence. 
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